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ABSTRACT
Traditional Western musical instruments have evolved to be ro-
bust and predictable, responding consistently to the same player
actions with the same musical response. Consequently, errors oc-
curring in a performance scenario are typically attributed to the
performer and thus a hallmark of musical accomplishment is a flaw-
less musical rendition. Digital musical instruments often increase
the potential for a second type of error as a result of technological
failure within one or more components of the instrument. Gestural
instruments using machine learning can be particularly susceptible
to these types of error as recognition accuracy often falls short of
100%, making errors a familiar feature of gestural music perfor-
mances. In this paper we refer to these technology-related errors
as system errors, which can be difficult for players and audiences
to disambiguate from performer errors. We conduct a pilot study in
which participants repeat a note selection task in the presence of
simulated system errors. The results suggest that, for the gestural
music system under study, controlled increases in system error cor-
respond to an increase in the occurrence and severity of performer
error. Furthermore, we find the system errors reduce a performer’s
sense of control and result in the instrument being perceived as
less accurate and less responsive.
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1 INTRODUCTION
An indicator of musical accomplishment and virtuosity in Western
classical music is the ability to perform a faithful rendition of com-
plex musical scores with fluidity and expression. The development
of musical skill is sometimes viewed as a journey on which players
learn from their mistakes, and failure is recognised as the “conse-
quence of striving to succeed” [26]. Gurevich et al describe success
as “the inverse of error” [25] and while the assessment of musical
skill is certainly complex and subjective, an important factor is the
frequency and severity of performer-related errors [1, 13].

In performances featuring digital musical instruments (or DMIs),
the evaluation of skill can be further complicated, as the connec-
tion between performer action and auditory response is not always
obvious [15, 40]. This unfamiliarity regarding cause and effect is of-
ten unavoidable, especially when DMIs introduce new affordances
and performance technique. Additionally, new instruments and
interfaces are often handmade prototypes and, compared with com-
mercially engineered instruments, their designs are typically less
refined and their performers are understandably less practised [12].
Consequently, it can be challenging for spectators to recognise a
performer’s accomplishments [20] and it may not be obvious when
mistakes have been made [4].

Live music performances with new and experimental instrument
prototypes are often disrupted by errors, particularly when gestures
and body movement are the primary control modality [5]. Despite
the widespread impact of these problems, and the clear importance
of error and failure in music practice more widely, the examination
of error in DMI performance is still a relatively unexplored area of
research. In previous work, the spectator experience has been stud-
ied, demonstrating that audience perception of performance error
does not correspond to a reduction in enjoyment [4]. O’Modhrain
has previously argued that “the most important stake-holder in
the process of designing and building a DMI is the performer,” sug-
gesting that DMI evaluation should also focus on the performer’s
perception of their instrument. Consequently, this paper begins to
explore the effect of error on a player’s perception of, and ability to
perform with DMIs. In particular, the focus here is on technology-
related errors that cause an instrument to incorrectly interpret a
player’s actions, i.e., when a player precisely expresses their inten-
tion, but the instrument fails to respond correctly. This problem
is particularly prevalent in gestural music systems, using motion
capture and machine learning, which can introduce an unavoidable
degree of indeterminacy. We refer to these technology-related er-
rors as system errors and present the results of a pilot study that
has been designed to reveal the impact of these types of errors on
a player’s perception of, and ability to perform with, a dataglove-
based gestural DMI. In Section 2 we review the literature relating
to musical indeterminacy, error and failure, before presenting the
system error study and results in Section 3. In Section 4 we conclude
with a summary of findings identifying potential areas for future
work.

2 PERFORMER AND SYSTEM ERROR
In the Western classical tradition, performers are often framed
as transparent mediators of composer intent, with little tolerance
for error [23]. Consequently, traditional acoustic musical instru-
ments have evolved to be robust and predictable, responding to the
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same player actions with a consistent musical response. With the
exception of mechanical errors such as broken strings and reeds,
unintended errors are typically attributed to the player. We refer to
these types of performer-related errors as performer errors.

In music performance, errors are certainly not always regarded
negatively, rather they are embraced as an inevitable consequence
of exploratory performance technique that can open creative oppor-
tunities for musical progress [5]. As Scott Adams famously stated
“creativity is allowing yourself to make mistakes, art is knowing
which ones to keep” [2]. Similarly, indeterminacy and chance also
play an important role in contemporary music, for example, Cage
used an abstract notation in Concert for Piano and Orchestra to pro-
vide space for performer improvisation and Xenakis used stochastic
processes to compose Pithoprakta. Notions of indeterminacy have
also been a longstanding feature of performances with DMIs; for
example, Chadabe’s Echos [9] and Dahlstedt’s Pencil Fields [10] both
incorporate elements of indeterminacy, where unexpected changes
are viewed as creative input from the instrument. Hazzard et al have
recently studied the aesthetic opportunity of errors and contributed
a set of response strategies for live musical performance [26].

In these examples, indeterminacy and error are intentional and
measured; however, performances with experimental, prototype
DMIs are frequently disrupted by unintended errors owing to some
form of technical failure within the instrument, or what we refer to
as system errors. These prototype instruments are often hand made
and rarely subjected to rigorous testing; consequently, the potential
for system errors can be high, and may be traced to a multitude of
sources including:

(1) mechanical failure of tactile components or enclosures
(2) electrical failure linkedwith sensors/batteries/soldering/noise
(3) firmware or software bugs
(4) communication problems causing latency/interference

Machine Learning (ML) techniques are becoming increasingly
used in DMI and music interaction design [29, 41, 44], particularly
in gestural interaction systems, which are noted for their suscep-
tibility to error [3, 5, 37]. These errors are a consequence of the
challenges recognition systems face when distinguishing between
different classes of similar gestures [35]. ML is valuable in this con-
text because it allows researchers to move away from explicitly
defining the relationships between multivariate sensor readings
and the human actions that cause them; instead, these connections
can be “taught by example” [19, 30, 34]. A number of libraries and
applications have been developed to enable this approach includ-
ing the Gesture Recognition Toolkit [21] and Wekinator [16]. In
the context of gestural music interaction, ML enables end-users
to easily manipulate sound using unique and complex freehand
movements and gestures. While this approach enables gestures to
be abstracted away from their corresponding data streams, it can
make precise control in performance scenarios challenging [18].
ML algorithms are not by themselves a source of indeterminacy but
they are susceptible to misclassification errors and unpredictable
predictions as a result of noise in the gesture capture system and/or
limitations of the training data. Consequently, recognition accu-
racy always falls short of 100% [42]. While this imprecision and
unpredictability can be embraced as a means of creative expression
[17], unintended system errors can become an inevitable feature

of live performance. In our previous work, misclassification errors
have been shown to be a hindrance to both novice and expert users
of gestural music systems [6].

What are the effects of system errors? Do they make instruments
harder to play and do they increase the likelihood of performer
errors? And how do system errors affect a performer’s perception of
their instrument? In the following sections we present a study that
begins to explore the impact of system error when using a dataglove-
based gestural music interaction system. Participants are asked to
repeatedly practise a musical task as deliberate system errors are
introduced that are designed to simulate system errors that can
occur in gestural DMIs. Three metrics that are linked with musical
skill are measured: movement smoothness [22, 24, 39], timing error
[13, 14] and note selection error [13]. In addition, the participants’
perceptions of the instrument are also captured in terms of accuracy,
responsiveness and control. It is hypothesised that the presence of
system error will negatively impact the participants’ perception of
their instrument and increase the prevalence of performer errors.

3 SYSTEM ERROR PILOT STUDY
We conducted a within-group pilot study with five participants to
explore the effects of system error, 2 male, 3 female, aged 22–35
(𝑀 = 29, 𝑆𝐷 = 4.6). All participants were right handed and were
assessed for musical ability using the Gold-MSI metric [36] with
general sophistication recorded in the range 57–76 (𝑀 = 66.8, 𝑆𝐷
= 6.24). Participants were paid a nominal fee of £10 and asked to
complete a musical task using a dataglove-based gestural DMI that
has been described in previous work [28, 31, 33]. The system is
shown in figure 2 and comprises an inertial measurement unit (on
the wrist) combined with eight flex sensors (one on the thumb and
little finger, two on the proximal and distal joints of the remaining
fingers). Participants had no prior experience using the system and
for each task they were asked to perform 20 repetitions of a short
piece of music (Figure 1) in time to a 60 BPM metronome. For the
first four repetitions, the reference melody was played alongside
the metronome. The task was repeated six times with intentional
system error introduced at 0%, 1%, 2%, 5%, 10% and 20% respectively.
To mitigate carryover effects, the order in which participants were
exposed to the different error rates was randomised. Errors were
introduced when participants selected to play a note, where, for
example, at 0% error, no deliberate errors were introduced and at
20%, one in five notes was played incorrectly by choosing a different
note at random from the score (Figure 1).

left forwardup leftforward right down down 

Figure 1: The musical score for the task showing the corre-
sponding direction for each note

3.1 Mapping Strategy
In DMIs, the permutations of how a player’s actions generate a mu-
sical response are limited by the physical affordances of a system’s
interface and the constraints of the underlying audio processes.
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While some mid-air performance systems have drawn from ex-
isting gestural disciplines such as Soundpainting [43], typically
connections between action and sound are either defined by the
system developer [27] or by end-users [7, 11]. With no established
convention for connecting gestures to music, mappings were cho-
sen to satisfy the following criteria:

(1) mappings should be drawn from the practice of existing
gestural music performers

(2) mappings should be chosen that minimise the occurrence
of genuine system errors to avoid the conflation of real and
simulated errors

In this study, participants were asked to complete a simple note
selection task and the chosen mapping strategy was based upon a
simple “point and grab” metaphor that was designed, and is widely
used by practising gestural music performers [6]. Note on and off
events are triggered by performing a grab (fist) posture within
one of five directional lobes: up, down, left, right and forwards,
with each direction mapped to a note in the task’s musical score
(see Figure 1). Directional lobes were defined using the Segmented
Orientation method defined in [33].

To further reduce the occurrence of genuine system errors, the
machine learning components of the gestural system, used for pos-
ture recognition, were disabled. Instead, the participant’s grab pos-
ture was engaged when a threshold on the middle finger proximal
flex sensor was exceeded. Additionally, the system was connected
to the logging equipment over a wired connection, to mitigate
errors associated with wireless interference [32]. One glove was
used, with all participants completing the task with their preferred
right-hand.

3.2 Experimental Setup
Figure 2 shows the experimental setup and Figure 3 shows the glove
and motion capture markers, which were placed on the partici-
pant’s back, lower arm and upper arm. The task and glove mapping
strategy were explained to the participants, and they were then
given as long as they needed to familiarise themselves with the
system, which amounted to a few minutes at most. Participants
were provided with a score, denoting the order of the point-and-
grab directions required to play the piece. A pair of Genelec 8030CL
monitors provided auditory feedback, with the notes played by
the participant panned to the left monitor and the metronome and
reference track panned to the right.

3.3 Collected Data
Movement data were recorded using a Vicon T40s motion capture
system along with all data streams from the accelerometers and
flex sensors on the dataglove.

Music-related data was collected in MIDI format and included
the note on the score, the note selected by the performer and the
note emitted by the system. This enabled the disambiguation of
performer errors from system errors. For example, if the musician
intended to play C3, but the system introduced an error and played
D3, both the performer’s intended note and the system’s erroneous
note were recorded. These data were logged alongside a reference
performance, which represented a precisely quantised rendition of
the piece.

Timestamp Label MIDI output
0 REFERENCE Note on C3
-132 USER_PERFORMED Note on C3
-132 SYSTEM_CORRECT Note on C3
1000 REFERENCE Note on D3
1011 USER_PERFORMED Note on E3*
1011 SYSTEM_CORRECT Note on E3
2000 REFERENCE Note on E3
1958 USER_PERFORMED Note on E3
1958 SYSTEM_CORRECT Note on E3
3000 REFERENCE Note on C4
2991 USER_PERFORMED Note on C4
2991 SYSTEM_ERROR Note on G3**
4000 REFERENCE Note on D3
4053 USER_PERFORMED Note on G3*
4053 SYSTEM_CORRECT Note on G3
5000 REFERENCE Note on E3
5016 USER_PERFORMED Note on E3
5016 SYSTEM_CORRECT Note on E3
6000 REFERENCE Note on G3
5919 USER_PERFORMED Note on G3
5919 SYSTEM_CORRECT Note on G3
7000 REFERENCE Note on C3
7101 USER_PERFORMED Note on E3**
7101 SYSTEM_ERROR Note on D3*

Table 1: Example of one trial ofMIDI data. *Examples of per-
former error. **Examples of system error.

In addition to capturing quantitative movement and performance
data at each error level, qualitativemeasurements around the partici-
pant’s subjective experience were recorded after each test condition.
This survey involved a series of Likert scale questions concerning
perceived responsiveness, control and accuracy:

(1) On a scale from 0 – 10, where 0 is not responsive at all and
10 is completely responsive, how responsive would you say
the gloves were to your actions?

(2) On a scale from 0 – 10, where 0 is no control at all and 10 is
complete control, how much control did you feel you had?

(3) On a scale from 0 – 10, where 0 is not at all accurate and
10 is completely accurate, how accurately did you feel the
gloves were responding to your actions?

3.4 Movement Smoothness
Movement smoothness was calculated using the method described
by Caramiaux [8]: an integrated squared jerk value was measured
along each axis of movement for the inter-onset intervals between
performed note onsets. For each trial, an overall movement smooth-
ness score was recorded as the cumulative jerk values for each
inter-onset interval (i.e. the jerk value between each note). Higher
values represent a larger jerk-cost, and thus less-smooth movement.

To allowmeaningful averages to be calculated for each condition,
median normalisation was applied to each participant’s movement
smoothness scores.
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Figure 2: Experimental Setup

Figure 3: Motion capture marker placement

3.5 Note Selection Error
To examine participant note selection error, the user performed
Note On information was compared against the reference note
in the score. For example, in the sample provided in Table 1, the
participant performed three wrong notes: the second (E3 instead of
D3), fifth (G3 instead of D3) and eighth (E3 instead of C3).

3.6 Timing Error
Performer timing error was also examined. A timing error score
was assigned to each performed trial by measuring the cumulative
difference between the user performed note onset and the corre-
sponding time stamp in the reference MIDI data (see Table 1). In
cases where the participant failed to perform a note for a corre-
sponding reference note, an error of one second (the length of one
beat/note in the trial) was recorded.

3.7 Results
User perception results for the participants are shown in Figure 4
along with movement smoothness, note selection error and note

timing error in Figure 5, where whiskers indicate 1.5 × interquartile
range. The user perception responses (Figure 4) indicated a trend
in all three aspects of perception towards more positive responses
with smaller amounts of system error, with a significant reduction
in perceived accuracy, responsiveness and control, once any system
error had been introduced.

A Shapiro-Wilk test of normality indicated that the majority
of the quantitative results were not normally distributed. Conse-
quently, the data were analysed using non-parametric Friedman
rank sum tests and post hoc pairwise Wilcoxon signed rank tests
with Bonferroni adjustment. Movement smoothness results were
median-normalised by scaling each participant’s scores by their
median across all conditions. The Friedman test indicated no signif-
icant differences between the 0, 1, 2, 5, 10 and 20% error conditions,
𝜒2 (5) = 10.6, 𝑝 = 0.059. However, the Friedman test did indicate
a significant deference between observed note timing error at the
different error conditions, 𝜒2 (5) = 100.549, 𝑝 < 0.001. Post hoc
tests revealed that, when compared with the control condition (0%,
𝑀𝑑𝑛 = 41), timing errors were greater when error rates were set
to 5% (𝑀𝑑𝑛 = 56, 𝑇 = 352, 𝑟 = 0.36, 𝑝 < 0.001); 10% (𝑀𝑑𝑛 = 54,
𝑇 = 352, 𝑟 = 0.19, 𝑝 < 0.01) and 20% (𝑀𝑑𝑛 = 69, 𝑇 = 352, 𝑟 = 0.36,
𝑝 < 0.001). The Friedman test also indicated a significant differ-
ence between observed note selection error for the different error
conditions, 𝜒2 (5) = 19.7, 𝑝 < 0.01. However, the post hoc tests
revealed no significant difference between the control condition
(0%,𝑀𝑑𝑛 = 3) and the other error rate conditions. However, a sig-
nificant difference was measured when comparing the results of the
2% error condition (𝑀𝑑𝑛 = 3) with the 5% error condition (𝑀𝑑𝑛 = 4,
𝑇 = 39, 𝑟 = 0.48, 𝑝 < 0.05) and, similarly, when comparing the 2%
and 20% conditions (𝑀𝑑𝑛 = 5, 𝑇 = 39, 𝑟 = 0.48, 𝑝 < 0.05).
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Figure 4: User perception results
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Figure 5: Movement smoothness, note selection error and timing error results

3.8 Discussion and Limitations
The results of this pilot study indicate that system errors can have a
negative impact on a both player’s perception of, and their ability to
perform with, a gestural DMI. The quantitative results suggest that
system errors increase the occurrence of performer note selection
errors and the severity of timing errors. It appears that when a
system erroneously interprets a player’s actions, the player is more
likely to make a mistake. This observation is to some extent ax-
iomatic: the importance of accurate feedback for musical control is
well-established and reducing feedback quality invites uncertainty
and error. A clear limitation of this study is the small number of
participants which may explain why some of the between group
comparisons did not show significant differences. Consequently, re-
sults should be treated with some caution. There may also be other
factors at play, for example at the highest error rate (20%) several
participants were well aware that the system was misinterpreting
their actions. It might be the case that less obvious errors occurring
at lower rates (i.e. 5%) might be more disruptive as their source is
unknown. Perhaps more interestingly, the results of the qualitative
study indicate that in the presence of any error, the system was
perceived to be significantly less accurate, less responsive and led
to a reduced sense of control. The most significant drop in these

perceptual factors occurs between system error rates of 0% and 1%,
an effect that largely plateaus as the error rate is further increased.
This finding suggests that performers could have a very low toler-
ance for error. If these result are indicative of DMIs more widely
this could present an important consideration for the designers
of prototype instruments and interfaces that exhibit unintended
system errors.

4 CONCLUSION
Musical performances with DMIs are frequently disrupted by unin-
tended errors that can be traced to two possible sources: mistakes
made by the performer and technology-related errors made by the
instrument. In this paper we defined these two types of error as
performer error and system error respectively, before exploring the
impact of the latter in a pilot study with five participants. Partic-
ipants performed a note selection task using a gestural DMI and
their performance and perceptions were analysed as controlled
rates of system error were introduced. The errors were designed to
resemble genuine system errors that can occur in gestural music
systems.

Although the number of participants was small, the study sug-
gests that as system errors increase, the prevalence of performer
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note selection errors and the severity of timing errors also increase.
That is, players are more likely to make mistakes when the system
on which they rely is itself prone to error. Additionally, the survey
indicated that even 1% of system error has a significant negative
effect on a player’s sense of control and their perception of the
system’s accuracy and responsiveness.

The study also indicated that the introduction of error had no
measurable effect on the average movement smoothness of a per-
former’s actions, a metric which has been used in previous work
as an indicator of skill acquisition. The within group study design
may to some extent explain this finding, as each participant com-
pleted the task at every rate of system error. Consequently, the
randomised order makes it difficult to separate and compare the
skill acquired within each trial from the skill carried over between
trials. Additionally, the study time might have been too short to
capture any meaningful development of skill.

While further investigation is required, these results could high-
light important implications for the DMI research community: there
appears to be an important link between the unreliability of instru-
ments that we create and the error-proneness and confidence of the
performers that use them. DMIs integrating potentially unreliable
technologies, materials and mechanisms can result in a high and
in some cases inevitable risk of system error, which can disrupt
musical performances for both players and audiences. This issue is
of particular relevance to systems incorporating machine learning
algorithms, that are susceptible to inevitable system errors as a
result of noise or insufficient training data. If system error is an
unavoidable feature of modern DMIs, further work that attempts to
understand how these errors can be accommodated and managed
in music performance scenarios will be helpful, building on the
initial work of Hazzard et al [26].

The pilot study helps to provide useful parameters for future
research and we intend to conduct two further studies with a larger
number of participants, performing for longer periods with a re-
duced set of error conditions (e.g. 0%, 5% and 10%). Firstly, a study
identical to the one presented here that examines note selection and
timing error. Second, a between group study in which participants
within each group perform at a fixed error rate to identify the effects
of system error on skill acquisition and movement smoothness.
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