
number of packets arriving from each x-OSC within each
one second window. Each experiment starts with a single
running x-OSC. At one minute intervals, an additional
x-OSC is activated for a period of 15 minutes, to yield a
recording of throughput for 1 to 15 x-OSCs. Tests were
conducted with the 15 x-OSCs sharing a single channel and
evenly distributed between three non-overlapping channels
to investigate the benefit.
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Figure 6: Throughput of 1 to 15 x-OSCs sending to
a single AP on one channel

Figure 6 shows the throughput for 1 to 15 x-OSCs
connected to a single AP and indicates that up to
four x-OSCs can operate on a single channel without
significantly impacting the 400 packets per second ceiling of
a single x-OSC. Beyond this, additional x-OSCs reduce the
throughput of each device so that when all 15 are active, the
net throughput is � 3800 packets per second. An important
observation is that this over-saturated network reduces the
throughput of each device equally (from 400 to � 250 packets
per second).
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Figure 7: Throughput of 1 to 15 x-OSCs sending to
t hree APs on three non-overlapping channels

Figure 7 shows the throughput for 1 to 15 x-OSCs
connected to three APs, each operating on a separate
non-overlapping channel. Distribution between multiple
channels can be seen to produce an increased net
throughput of � 4800 packets per second. The first group
of five x-OSCs were configured on channel 1, the next
on channel 11 and the final five on channel 6. This
specific order demonstrates that the channel 1 and 11 groups
are able to operate simultaneously without interference.
After 10 minutes, the inclusion of the final group (channel
6) increases the net throughput proportionally but with
significantly increased variance. Crucially, it can be seen
that the the throughput of an x-OSC in the channel 11

group (shown in green) falls below that of the rest once the
channel 6 group appears. This demonstrates the potential
for channel 6 to interfere with channels 1 or 11 [7].

5.3 Anechoic Tests
The investigations presented in sections 5.1 and 5.2 were
repeated in an RF anechoic chamber to eliminate the
possibility of external interference. Figure 8 shows the
computer and x-OSC positioned in the anechoic chamber
for a latency investigation. The results were found to be
equivalent to those collected in the lab.

Figure 8: x-OSC with computer inside the anechoic
chamber during latency investigation

6. CONCLUSION
Despite its ubiquity and impressive specifications, Wi-Fi
appears underused as a platform for new musical interfaces.
In this paper, we demonstrate the great potential that Wi-Fi
has to offer as a robust, low latency and high throughput
wireless communication technology. We have proposed a
number of configurations intended to limit the disruptive
effects of interference and to optimise a WLAN for live
music performance. In section 3, a 2.4 GHz directional
patch antenna was developed and tested that had been
designed to maximise sensitivity to signals from performers,
while suppressing interference from elsewhere. In section
4, a number of recommendations were proposed that we
have found to provide the lowest latency and the highest
throughput. These recommendations can be summarised
as follows:

� avoid device hosted ad hoc networks
� do not use encryption
� unicast, don’t broadcast
� match your AP to your device network type
� use large packets where possible
� use multiple non-overlapping network channels

Practical results obtained when following these
recommendations were presented in section 5. Using
the x-OSC interface device, a latency of < 3 ms and a
throughput of up to 4800 messages per second were
recorded. This throughput reading was made with 15
x-OSCs simultaneously transmitting � 320 OSC messages
per second, corresponding to the successful transmission of
240 analogue input readings every 3 ms. These results were
obtained using an 802.11g WLAN offering a maximum
throughput of 54 Mbps.
As affordable low-cost devices begin to emerge that are

compatible with the 802.11n (600 Mbps) and the recently
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approved 802.11ac (1300 Mbps) specifications, these figures
will continue to improve.

In future work we intend to rigorously evaluate the
complete system (network infrastructure and antenna) in
the context of ‘real-world’ performance scenarios. In
particular, given the high throughput measured in our
studies, we are interested in examining the use of x-OSC as
an enabling technology for collaborative live performance
using a wireless sensor network.
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